3.253 \(\int \frac {A+B \cos (c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=67 \[ \frac {2 (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b d \sqrt {a-b} \sqrt {a+b}}+\frac {B x}{b} \]

[Out]

B*x/b+2*(A*b-B*a)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/b/d/(a-b)^(1/2)/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2735, 2659, 205} \[ \frac {2 (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b d \sqrt {a-b} \sqrt {a+b}}+\frac {B x}{b} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(a + b*Cos[c + d*x]),x]

[Out]

(B*x)/b + (2*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b*Sqrt[a + b]*d)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{a+b \cos (c+d x)} \, dx &=\frac {B x}{b}-\frac {(-A b+a B) \int \frac {1}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac {B x}{b}+\frac {(2 (A b-a B)) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b d}\\ &=\frac {B x}{b}+\frac {2 (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b \sqrt {a+b} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 68, normalized size = 1.01 \[ \frac {\frac {2 (a B-A b) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\sqrt {b^2-a^2}}+B (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(a + b*Cos[c + d*x]),x]

[Out]

(B*(c + d*x) + (2*(-(A*b) + a*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2])/(b*d)

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 242, normalized size = 3.61 \[ \left [\frac {2 \, {\left (B a^{2} - B b^{2}\right )} d x + {\left (B a - A b\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right )}{2 \, {\left (a^{2} b - b^{3}\right )} d}, \frac {{\left (B a^{2} - B b^{2}\right )} d x - {\left (B a - A b\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right )}{{\left (a^{2} b - b^{3}\right )} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(2*(B*a^2 - B*b^2)*d*x + (B*a - A*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c
)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x
+ c) + a^2)))/((a^2*b - b^3)*d), ((B*a^2 - B*b^2)*d*x - (B*a - A*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) +
b)/(sqrt(a^2 - b^2)*sin(d*x + c))))/((a^2*b - b^3)*d)]

________________________________________________________________________________________

giac [B]  time = 0.66, size = 296, normalized size = 4.42 \[ -\frac {\frac {{\left (\sqrt {a^{2} - b^{2}} B {\left (2 \, a - b\right )} {\left | a - b \right |} - \sqrt {a^{2} - b^{2}} A b {\left | a - b \right |} - \sqrt {a^{2} - b^{2}} A {\left | a - b \right |} {\left | b \right |} + \sqrt {a^{2} - b^{2}} B {\left | a - b \right |} {\left | b \right |}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {\frac {2 \, a + \sqrt {-4 \, {\left (a + b\right )} {\left (a - b\right )} + 4 \, a^{2}}}{a - b}}}\right )\right )}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} b^{2} + {\left (a^{3} - 2 \, a^{2} b + a b^{2}\right )} {\left | b \right |}} + \frac {{\left (2 \, B a - A b - B b + A {\left | b \right |} - B {\left | b \right |}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {\frac {2 \, a - \sqrt {-4 \, {\left (a + b\right )} {\left (a - b\right )} + 4 \, a^{2}}}{a - b}}}\right )\right )}}{b^{2} - a {\left | b \right |}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-((sqrt(a^2 - b^2)*B*(2*a - b)*abs(a - b) - sqrt(a^2 - b^2)*A*b*abs(a - b) - sqrt(a^2 - b^2)*A*abs(a - b)*abs(
b) + sqrt(a^2 - b^2)*B*abs(a - b)*abs(b))*(pi*floor(1/2*(d*x + c)/pi + 1/2) + arctan(2*sqrt(1/2)*tan(1/2*d*x +
 1/2*c)/sqrt((2*a + sqrt(-4*(a + b)*(a - b) + 4*a^2))/(a - b))))/((a^2 - 2*a*b + b^2)*b^2 + (a^3 - 2*a^2*b + a
*b^2)*abs(b)) + (2*B*a - A*b - B*b + A*abs(b) - B*abs(b))*(pi*floor(1/2*(d*x + c)/pi + 1/2) + arctan(2*sqrt(1/
2)*tan(1/2*d*x + 1/2*c)/sqrt((2*a - sqrt(-4*(a + b)*(a - b) + 4*a^2))/(a - b))))/(b^2 - a*abs(b)))/d

________________________________________________________________________________________

maple [A]  time = 0.06, size = 113, normalized size = 1.69 \[ \frac {2 \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) A}{d \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {2 \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) a B}{d b \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{d b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

2/d/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A-2/d/b/((a-b)*(a+b))^(1/2)*arcta
n(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*a*B+2/d/b*arctan(tan(1/2*d*x+1/2*c))*B

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 1.72, size = 344, normalized size = 5.13 \[ \frac {a\,\left (B\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {-\left (a+b\right )\,\left (a-b\right )}-B\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {b^2-a^2}\right )-A\,b\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {-\left (a+b\right )\,\left (a-b\right )}+A\,b\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {b^2-a^2}}{b\,d\,\left (a^2-b^2\right )}+\frac {2\,B\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(a + b*cos(c + d*x)),x)

[Out]

(a*(B*log((b*sin(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)
/2))*(-(a + b)*(a - b))^(1/2) - B*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 -
 a^2)^(1/2))/cos(c/2 + (d*x)/2))*(b^2 - a^2)^(1/2)) - A*b*log((b*sin(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + c
os(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2))*(-(a + b)*(a - b))^(1/2) + A*b*log((a*sin(c/2 + (d*x)
/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2))*(b^2 - a^2)^(1/2))/(b*d
*(a^2 - b^2)) + (2*B*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(b*d)

________________________________________________________________________________________

sympy [A]  time = 24.72, size = 524, normalized size = 7.82 \[ \begin {cases} \frac {\tilde {\infty } x \left (A + B \cos {\relax (c )}\right )}{\cos {\relax (c )}} & \text {for}\: a = 0 \wedge b = 0 \wedge d = 0 \\\frac {A}{b d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}} + \frac {B x}{b} + \frac {B}{b d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}} & \text {for}\: a = - b \\\frac {A x + \frac {B \sin {\left (c + d x \right )}}{d}}{a} & \text {for}\: b = 0 \\\frac {x \left (A + B \cos {\relax (c )}\right )}{a + b \cos {\relax (c )}} & \text {for}\: d = 0 \\\frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{b d} + \frac {B x}{b} - \frac {B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{b d} & \text {for}\: a = b \\\frac {A b \log {\left (- \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} + \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )}}{a b d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} - b^{2} d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}} - \frac {A b \log {\left (\sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} + \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )}}{a b d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} - b^{2} d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}} + \frac {B a d x \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}}{a b d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} - b^{2} d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}} - \frac {B a \log {\left (- \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} + \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )}}{a b d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} - b^{2} d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}} + \frac {B a \log {\left (\sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} + \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )}}{a b d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} - b^{2} d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}} - \frac {B b d x \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}}{a b d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}} - b^{2} d \sqrt {- \frac {a}{a - b} - \frac {b}{a - b}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

Piecewise((zoo*x*(A + B*cos(c))/cos(c), Eq(a, 0) & Eq(b, 0) & Eq(d, 0)), (A/(b*d*tan(c/2 + d*x/2)) + B*x/b + B
/(b*d*tan(c/2 + d*x/2)), Eq(a, -b)), ((A*x + B*sin(c + d*x)/d)/a, Eq(b, 0)), (x*(A + B*cos(c))/(a + b*cos(c)),
 Eq(d, 0)), (A*tan(c/2 + d*x/2)/(b*d) + B*x/b - B*tan(c/2 + d*x/2)/(b*d), Eq(a, b)), (A*b*log(-sqrt(-a/(a - b)
 - b/(a - b)) + tan(c/2 + d*x/2))/(a*b*d*sqrt(-a/(a - b) - b/(a - b)) - b**2*d*sqrt(-a/(a - b) - b/(a - b))) -
 A*b*log(sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))/(a*b*d*sqrt(-a/(a - b) - b/(a - b)) - b**2*d*sqrt(-a
/(a - b) - b/(a - b))) + B*a*d*x*sqrt(-a/(a - b) - b/(a - b))/(a*b*d*sqrt(-a/(a - b) - b/(a - b)) - b**2*d*sqr
t(-a/(a - b) - b/(a - b))) - B*a*log(-sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))/(a*b*d*sqrt(-a/(a - b)
- b/(a - b)) - b**2*d*sqrt(-a/(a - b) - b/(a - b))) + B*a*log(sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))
/(a*b*d*sqrt(-a/(a - b) - b/(a - b)) - b**2*d*sqrt(-a/(a - b) - b/(a - b))) - B*b*d*x*sqrt(-a/(a - b) - b/(a -
 b))/(a*b*d*sqrt(-a/(a - b) - b/(a - b)) - b**2*d*sqrt(-a/(a - b) - b/(a - b))), True))

________________________________________________________________________________________